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Abstract

The properties of shielded wmicrostrip lines
are analyzed by the method of equivalent network,
which properly takes into account the hybrid
nature of the guided waves. The effective
dielectric constants and characteristic impedances
of microstrip lines are obtained to illustrate the
effects of the size of the waveguide crosssection.
Numerical results obtained are shown to be in good
agreement with available data in the literature.

Introduction
In this paper, the method of equivalent
network is presented for the analysis of

dispersion characteristics of shielded microstrip
lines, with a particular attention directed toward
the effects of waveguide crosssectional geometry.
In particular, the formula for the characteristic
impedance is derived and the numerical results are
obtained. The method is based on the building
block approach of the microwave network theory,
employing the rigorous mode matching technique to
solve the boundary value problem. The approach
offers many advantages: The problem is formulated
in a rigorous fashion, with both TE and TM modes
of each constituent region included to account for
the hybrid nature of the guided modes. The
treatment of a complicated boundary value problem
reduced to one of a simple junction discontinuity.
Finally, The analytic results so obtained are
simple in form and clear for establishing physical
concepts associated with the microstrip lines.

Analysis of Guided Wave oblique Incident Problem

The crosssectional geometry of the shielded
microstrip is shown in Fig. 1. The structure is
assumed to be lossless and the strip has a zero
thickness. Here, the crosssection is viewed as
consisting of the strip region, to be referred to
as the inside region, sandwiched between two
identical outside regions. The inside region
includes two subregions, labelled as Region I and
IT with the metal strip as the dividing boundary.
For convenience, the outside region will be
referred to as Region III in the sequel. From
such a viewpoint, Region I and II <can be
considered as parallel-plate waveguides filled
with uniform dielectriecs, whereas Region III is
a structure filled with multilayer dielectrics.
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The electromagnetic fields in each constituent
region can be expressed in terms of the mode
functions of the parallel-plate waveguides, which
are well known. The analysis of the shielded
microstrip line is then reduced to the treatment
of the boundary conditions at the junction
discontinuity between the inside and outside
regions, as we shall do here.

The guiding of waves by the strip line can be
viewed as waves being bounced back and forth by
the discontinuities at the two edges of the strip.
Thus, the basic problem to be analyzed is the
scattering of a guided wave by the discontinuity
at an oblique incidence angle, as shown in Fig. 2.
For such a boundary value problem, the general
field solution in each constituent region can be
represented a superposition of a complete set of
waveguide modes, including both TE and TM modes of
the parallel-plate waveguide. With respect to the
x direction, the transmission-line parameters for
every mode can be determined easily, and the
general modal solutions for all the field
components in the structure coordinate system are
considered completely determined.

Referring to Fig. 2, we observe that the
tangential components of the fields at the
junction discontiunity consist of the y and z
components, and we shall therefore consider only
these components explicitly. With the dependence,
exp(—jkzz), suppressed for clarity, we have

B, = ~EVIOFL) g6y (12)
B, = JE VLGOFLOMVIOFLD) gr55] (D)
B = -3Z L (OF (y) (1c)
H, = =S [1(OF ()10 (5] (1a)

The tangential field components must be continuous
across the junction discontinuity at x=0. From
the continuities of these four tangential field
components and the orthogenality of the mode
functions, we obtain the following systems of

linear equations:
TPy (2a)
?. - ?.X.. (2b)
R SR (2¢)
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where V' and I' are column vectors with the

transmission-line voltage and current of the n—th
TE mode, V'(0) and I;(O), at the n—th positions,
and simila%ﬁy for all other vectors above.

The P's, Q's, R's and S's are matrices
characterizing the coupling of modes at the
junction discontinuity; their general elements are
defined by the scalar products or overlap
integrals of mode functions on the two sides of
the discontinuity. It is evident from (2) that
the matrices P's are responsible for the coupling
among modes of the same polarization, whereas Q's,
R's and S's are responsible for the cross-coupling
among modes of opposite polarizations.

Guidance of Waves by Shielded Microstrip Lines

We employed the mode-matching technique to
obtain an equivalent network for the junction
discontinuity. With the equivalent network for
the junction discontinuities shown in Fig. 3, we
now employ the concept of input admittance and the
technique of transverse resonance in the lateral
direction of the waveguide. All the parameters of
the equivalent network are implicit functions of
k , and the resonance condition of the network
détermines the allowable values of k_ for a given
waveguide structure. z

In practice, most microstrip lines are
symmetric in geometry such as the one shown in
Fig. 1. Therefore, the network may be analyzed in
terms of the two simpler networks obtained from
open—circuit and short—circuit bisection, as shown
in Fig. 3. For simplicity, we shall deal only
with symmetric structure in this paper; the
generalization for asymmetric structures is almost
trivial and is omitted.

Referring to VFig. 3(b), the relationships
between the voltages and currents at the point
immediately to the left of the junction can be
expressed as

-~

1=

(3)
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where I and V are current and voltage vectors,
with the modal currepnt and voltage amplitudes as
their elements, and is a diagonal matrix, with
the input admittances of the transmission line

sections as its elements.

On the other hand, the relationship between
the voltages and currents may also be expressed in
terms of the network for junction discontinuity,
including the effect of the outside region.

I=YY (4)

>
where Y is admittance matrix looking to the right,
as derived from (2), which depend on the coupling
coefficients and the characteristic admittances of
the LSE and LSM modes in the outside region.

Evidently, (3) and (4) are two different sets
of equations relating the same sets of voltages
and currents to each other. Combining these two
equations together, we obtain a homogeneous system
of matrix equations

< -

T +DW =0 (5)

The condition for the existence of a non—trivial
solution of such a homogeneous system is:
st ~>

det(Y +Y) =0 (6)

This determinantal equation is often referred to
as the transverse-resonance relation and it
defines the dispersion relation for the microstrip
line wunder consideration, The characteristic
amdittances are related to the propagation
constant along the waveguide axis, k_, which can
now be determined as a root of the dispersion
relation (6). Then, for each dispersion root, the
voltages are determined by solving (5). Thus, the
fields everywhere within the system can be
determined from the voltage—current relations in
(3) or (4), and the boundary value problem is mnow
completely solved.

Characteristic Impedance of Shielded Microstrip

For a hybrid mode, there exists no exact

definition for characteristic impedance. The
impedance is usually defined by

z =2P/|1 ]2 (7

c z

is the total current
They are defined by

where P is the power and I
flowing in the z-direction.

* * *
= yt Mty (Tt g
P Re_US[(EXHy +EXHy ) (Eny +EyHX )1dxdy (8)

wi2_ o =

= [] wy_ ' n
1 =2 jo [(H!H) - (HI+H) ldx 9
where S represents the crosssection of the

enclosure waveguide.



Numerical Results

The transverse resonance relation (6) involves
matrices of infinite order. In practice, these
infinite systems of equations must be truncated to
a finite order for an approximate numerical
analysis. The accuracy obtainable from an
approximate analysis depends on the order of the
truncation, i.e., the number of modes considered
in the analysis. In this paper, we investigate
the effect of the crosssectional geometry of the
waveguide, with the inclusion of both TE and TM
modes. The results obtained check with available
data in the literature with very good agreement.

Fig. 4 shows the comparisons of the present
method with two other methods published in the
literature. With 18 LSE modes and equal number of
LSM modes included in the analysis, our results
for the effective dielectric constant check very
well with those of Itoh and Mittra(3), but not so

with those of Krage and Haddad(4). On the other
" hand, if only 10 modes of each polarization are
included in the analysis, our results check very
well with those of Krage and Haddad, as shown for
the impedance in Fig. 5. This shows that the
number of modes taken in the analysis may affect
the propagation characteristics considerably. The
accuracy of the theorectical results remains to be
verified experiments.

Fig. 6 shows the variation of the effective
dielectric constant with the ratio of the vertical
height of the waveguide to the thickness of the
dielectric film. It is seen that the outer
enclosure has an important effect on the
propagation characteristics of the microstrip
line, when the ratio is relatively small. On the
other hand, when the ratio is large, the outer
enclosure would have very little effect on the

propagation characteristics of the 1line, as
expect.
Figs. 7 and 8 show the effect of the

horizontal dimensions of the structure on the
propagation characteristics. When the side walls
are at a sufficiently large distance from the
strip, their presence does not affect the guiding
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Fig.l Shielded microstrip geometry
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characteristics, as is evident in Fig. 7. Fig. 8
shows that the effective dielective constant
increases with the increasing strip width, which

is consistent with physical expection. These
results check favorably with those for open
microstrip lines.
Conclusions
An efficient numerical method has been

presented for obtaining the dispersion properties
of shielded microstrip lines. The guidance of
waves are analyzed in terms of the scattering of
guided waves by a junction discontinuity at an
oblique incidence angle, Numerical results are
shown to be in very good agreement with available
data in the literature.

Acknowledgement

We are deeply indebted to S. T. Peng for his
helpful discussions during the course of research
and many suggestions for the improvement of this
paper.

References
(1) S. T. Peng and A. A. Oliner, "Guidance and
Leakage Properties of a Class of Open
Dielectric Waveguides: Part 1 - Mathematical

Formulation," IEEE Trans., MTT-29, pp843-855,

1981,

(2) S« T. Peng and Qi Lanfen, '"Analysis of
Metallic Strip Waveguides - Equivalent Network
Approach,” Proc. of 1985 International

Symposium on Antennas and EM Theory," Beijing,
China, pp744-749, 1985.

(3) T. Itoh and R Mittra, " A Technique for
Computing Dispersion Characteristics of
Shielded Microstrip Lines," IEEE Trans.,
MTT-22. pp896-897, 1974,

(4) M. K. Krage and G. 1. Haddad, "Frequency
Dependent Characteristics of Microstrip
Transmission Lines," TIEEE Trans., MTT-20,

pp678-688, 1972.

-

(a)

be ~

914:-

/v
\©
Ky \ X

u

(b)

Fig.2 Oblique incidence of quided
wave on a junction discontinuity
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Fig3. Transverse equivalent netwoerk
for shielded microstrip

7.5

ee{f?.a o

@ 83 €005

ﬂ/t{=
6.8 h/tf-lﬂ
b/tf‘lﬂ
5.9 ] 1 A J
8 a2 .84 .86 .88 .1
t{ VN

— This method -+- Itoh & Mittra

8.5

(b)

i {/ A
— This method ~+-~ Krage & Hadded

Fig.4 Effective dielectric constant
€ ogr versus tf

58
56 |
Zc \/
52| _
wh——"" Gv'lﬁ
?.'7‘ R
14
44r 2h/t -23
4 —i i i i i i
8! .84 BB .12 (1§ .2 .24 .28
tf ko

Fig.5 Characteristic impedance
Z, versus tgkg

7.5
€ets
7.8-
&, <8.975
8.5} /\=B. 423
\/\V «f/t{-l
Zb/!f!ﬁ
G‘B 1 i i Il i
8 S5 1B 15 28 25 2@
h/t{

7.8
€ett
8.5+
€,=0.875
5.8 /\=0.B423
1' J/crl
h/tf=lﬂ
5'5 i i 1 1 1 i i
] 2 4 & 8
(2h-w)/2u
Fig.7 égff versus -(2b-w) /2w
7.5
ee”m—
6.3+
€v=8.075
5.8}
tf/)\—ﬂ #423
Wt =1i
3.5 ”/ 2h/t =18
5'8 i Vi i, 3 i i 1
2 .8 1.6 2.4 3.2
w/t{

Fig.8 € o¢p versus w/tg



