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Abstract

The properties of shielded microstrip lines
are analyzed by the method of equivalent network,
which properly takes into account the hybrid
nature of the guided waves. The effective
dielectric constants and characteristic impedances
of microstrip lines are obtained to illustrate the
effects of the size of the waveguide crosssection.
Numerical results obtained are shown to be in good
agreement with available data in the literature.

Introduction

In this paper, the method of equivalent
network is presented for the analysis of
dispersion characteristics of shielded microstrip
lines, with a particular attention directed toward
the effects of waveguide croassectional geometry.
In particular, the formula for the characteristic
impedance is derived and the numerical results are
obtained. The method is based on the building
block approach of the microwave network theory,
employing the rigorous mode matching technique to

solve the boundary value problem. The approach
offera many advantages: The problem is formulated

in a rigorous fashion, with both TE and TM modes

of each constituent region included to account for
the hybrid nature of the guided modes. The

treatment of a complicated boundary value problem

reduced to one of a simple junction discontinuity.

Finally, The analytic results so obtained are

simple in form and clear for establishing physical

concepts associated with the microstrip lines.

Analysis of Guided Wave oblique Incident Problem

The crosssectional geometry of the shielded
microstrip is shown in Fig. 1. The structure is
assumed to be lossless and the strip has a zero
thickness. Here, the crosssection is viewed as

consisting of the atrip region, to be referred to
as the inside region, sandwiched between two

identical outside regiona. The inside region

includes two subregions, labelled as Region I and

II with the metal strip as the dividing boundary.

For convenience, the outside region will be

referred to as Region III in the sequel. From

such a viewpoint, Region I and 11 can be

considered as parallel-plate waveguides filled

with uniform dielectrics, whereas Region III is
a structure filled with multilayer dielectrics.

The electromagnetic fields in each constituent
region can be expressed in terms of the mode
functions of the parallel-plate waveguides, which

are well known. The analysis of the shielded
microatrip line is then reduced to the treatment

of the boundary conditions at the junction
discontinuity between the inside and outside

regions, as we shall do here.

The guiding of waves by the strip line can be

viewed as waves being bouncecl back and forth by

the diacontinuities at the two edges of the strip.

Thus , the basic problem to be analyzed is the
scattering of a guided wave by the discontinuity

at an oblique incidence angle, as shown in Fig’. 2.

For such a boundary value problem, the general
field solution in each constituent region can be

represented a superposition of a complete aet of

waveguide modes, including bot’h TE and TM modes of

the parallel-plate waveguide. With respect to the
x direction, the transmission-line parameters for
every mode can be determined easily, and the

general modal solutions fcm al 1 the field
components in the structure coordinate system are

considered completely determined.

Referring to Fig. 2, we observe that the

tangential components of the fields at the
junction discontiunity consist of the y and z
components, and we shall therefore consider only
these components explicitly. With the dependence,
exp(-jkzz), suppressed for clarity, we have

!, 1

‘Y = ‘Zvl(x)Fn(y) t?Gl
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The tangential field components must be continuous
across the junction discontinuity at x=O. From
the continuities of these four tangential field
components and the orthogenality of the mode
functions, we obtain the following systems of

linear equations:
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where V’ and 1! are column vectors with the

transmi~sion-li~e voltage and current of the n-th

TE mode, V’(0) and I:(O), at the n-th positions,

5and similar y for all other vectors above.

The P!s, Q’s, R’s and S’s are matrices
characterizing the coupling of modes at the

junction discontinuity; their general elements are

defined by the scalar products or overlap

integrals of mode functions on the two sides of

the discontinuity. It is evident from (2) that

the matrices P’s are responsible for the coupling

among modes of the same polarization, whereas Q’s,

R’s and S’s are responsible for the cross-coupling

among modes of opposite polarizations.

Guidance of Waves by Shielded Microstrip Lines

We employed the mode-matching technique to

obtain an equivalent network for the junction
discontinuity. With the equivalent network for

the junction discontinuities shown in Fig. 3, we

now employ the concept of input admittance and the

technique of transverse resonance in the lateral

direction of the waveguide. All the parameters of

the equivalent network are implicit functions of

k, and the resonance condition of the network

d~termines the allowable values of kz for a given

waveguide structure.

In practice, most microstrip lines are

symmetric in geometry such as the one shown in
Fig. 1. Therefore, the network may be analyzed in
terms of the two simpler networks obtained from

open-circuit and short–circuit bisection, as shown

in Fig. 3. For simplicity, we shall deal only

with symmetric structure in this paper; the

generalization for asymmetric structures is almost

trivial and is omitted.

Referring to Fig. 3(b), the relationships

between the voltages and currents at the point
immediately to the left of the junction can be

expressed as

1=-%—- (3)

where I and V are current and voltage vectors,
with t~e modai current and voltage amplitudes as

their elements, and~ is a diagonal matrix, with
the input admittances of the transmission line
sections as its elements.

On the other hand, the relationship between

the voltages and currents may also be expressed in
terms of the network for junction discontinuity,

includin~ the effect of the outside region.

I=YV—— (4)

+
where Y is admittance matrix looking to the right,

as derived from (2), which depend on the coupling

coefficients and the characteristic admittances of

the LSE and LSM modes in the outside region.

Evidently, (3) and (4) are two different sets

nf equations relating the same sets of voltages

and currents to each other. Combining these two

equations together, we obtain a homogeneous system
of matrix equations

(5)

The condition for the existence of a non-trivial

solution of such a homogeneous system is:

det(~ +;) = O (6)

This determinantal equation is often referred to

as the transverse-resonance relation and it
defines the dispersion relation for the microstrip

line under consideration. The characteristic
amdittances are related to the propagation
constant along the waveguide axis, kz, which can

now be determined as a root of the dispersion

relation (6). Then, for each dispersion root, the
voltages are determined by solving (5). Thus, the

fields everywhere within the system can be

determined from the voltage-current relations in

(3) or (4), and the boundary value problem is now
completely solved.

Characteristic Impedance of Shielded Microstrip

For a hybrid mode, there exists no exact

definition for characteristic impedance. The
impedance is usually defined by

z = 2P/lIz12
c

(7)

where P is the power and Iz is the total current
flowing in the z-direction. They are defined by

P= Rej~[(E’HP+E’’H’* )-@’’’HpHr~)ldxdy dxdy (8)
s XYXY yx yx

w12_

Iz = 2 ~ [(H:+ii’’)-(~;+;’)]dx
o

(9)

where S represents the crosssection of the
enclosure waveguide.
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Numerical kesults

The transverse resonance relation (6) involves

matrices of infinite order. In practice, these

infinite systems of equations must be truncated to

a finite order for an approximate numerical

analysia. The accuracy obtainable from an

approximate analysis dependa on the order Of the
truncation, i.e., the number of modes considered

in the analysis. In this paper, we investigate

the effect of the crosssectional geometry of the

waveguide, with the inclusion of both TE and TM

modes. The results obtained check with available

data in the literature with very good agreement.

Fig. 4 shows the comparisons of the present

method with two other methods published in the

literature. With 18 LSE modes and equal number of

LSM modes included in the analysis, our results
for the effective dielectric constant check very

well with those of Itoh and Mittra(3), but not so

with those of Krage and Haddad(4). On the other

hand, if only 10 modes of each polarization are

included in the analysis, our results check very

well with those of Krage and Haddad, as shown for

the impedance in Fig. 5. This shows that the

number of modes taken in the analysis may affect

the propagation characteristics considerably. The

accuracy of the theoretical results remains to be

verified experiments.

Fig. 6 shows the variation of the effective

dielectric constant with the ratio of the vertical

height of the waveguide to the thickness of the

dielectric film. It is seen that the outer

enclosure has an important effect on the

propagation characteristics of the microstrip

line, when the ratio is relatively small. On the

other hand, when the ratio is large, the outer

enclosure would have very little effect on the

propagation characteristics of the line, as

expect.

Figs. 7 and 8 show the effect of the

horizontal dimensions of the structure on the

propagation characteristics. When the side walls

are at a sufficiently large distance from the
strip, their presence does not affect the guiding

Ti I I
I I

Fig.1 Shielded microatrip geometry

characteristics, as is evident in Fig. 7. Fig. 8
shows that the effective dielective constant
increases with the increasing strip width, which
is consistent with physical expection. These
results check favorably with those for open
microstrip lines.

Conclusions —

An efficient numerical method has been
presented for obtaining the dispersion properties

of shielded microstrip lines. The guidance of
waves are analyzed in terms clf the scattering of

guided waves by a junction discontinuity at an

oblique incidence angle. Numerical results are
shown to be in very good agreement with available

data in the literature.
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Fig.2 Oblique incidenc~ ~f quided

wave on a junction discontinuity
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